Майкролэб
Информационные технологии для бизнеса
+7 495 234 2867
+7 499 788 9141
+7 968 354 8573
info@microlab.ru

Авторизация

||

Регистрация

Hardware

Software

Поддержка » HDD и удары

Технологии защиты от ударов и тряски в жестких дисках

 

Введение

Отказы, возникающие при эксплуатации носителей информации на жестких дисках, могут быть вызваны очень многими причинами, в том числе и производственными дефектами. В данной статье мы рассмотрим природу отказов, вызванных внешними механическими воздействиями на жесткий диск (удары, сотрясения, толчки, т.к. именно они являются "невидимыми" провокаторами гибели винчестера в 53% случаев), а также технологии, реализуемые в последних модификациях жестких дисков с целью значительного повышения устойчивости носителей к указанным воздействиям. 

Любой отказ или неисправность в накопителе может обернуться частичной или полной потерей очень важной и порой бесценной информации. В виду того, что значительная доля неисправностей в накопителях является следствием непредусмотренных спецификациями механических воздействий на них, в настоящее время особое внимание стало уделяться защите HDD от ударов и толчков. 

Ударное воздействие и его последствия

Падение жесткого диска (пусть даже с очень небольшой высоты) может вызвать внутренние повреждения в накопителе, несмотря на то, что внешне корпус винчестера выглядит безупречно, и на нем нет следов механического воздействия. Самым безопасным такое воздействия будет, если отказ HDD или наличие ошибок на нем были обнаружены при тестировании на заводе изготовителе. В этом случае, накопитель выбраковывается и на этом его жизненный путь закончен. Это не страшно, т.к. он никогда не поступит в эксплуатацию и на него никогда не будет записана информация. Гораздо хуже, если возникшие неисправности при тестировании себя никак не проявили, и накопитель поступил в продажу. Подобные неисправности опасны тем, что они проявят себя позже, постепенно ухудшая параметры накопителя, они несут угрозу хранящимся на накопителе данным…. 

Жесткие диски больше всего уязвимы перед механическими воздействиями в тот момент, когда они извлечены из оригинальной упаковки изготовителя, которая специально разработана для защиты накопителя после того, как он покинул заводские пределы. Жесткий диск, установленный в корпус компьютера, в большей мере защищен от внешних воздействий, т.к. в большинстве случаев корпус PC поглощает энергию ударного воздействия, и степень воздействия на винчестер может быть значительно снижена. Поэтому следует различать нерабочую и рабочую ударостойкость накопителей. 

  • Удар - это резкое и сильное механическое воздействие на предмет характеризующееся очень малой длительностью. Удары характеризуются огромными ускорениями, которые получает предмет за очень непродолжительное время. Поэтому уровень ударного воздействия, которому подвергнулся предмет, принято измерять в единицах кратных ускорению свободного падения G, равное 9,8 мс2

  •  
  • Ударостойкость накопителя определяет его способность переносить указанные в спецификациях значения ускорений полученных во время удара за определенное время. Стандартным временем ударного воздействия на накопители принято считать время в 2 миллисекунды
С этого момента и далее в статье, все упоминания на ударостойкость накопителей будут соответствовать ударному воздействию за время в 2 миллисекунды. 
  • Рабочая ударостойкость определяет его стойкость к ударам в рабочем состоянии, при которых обеспечивается безошибочность записи/чтения. Рабочая ударостойкость обычно не велика и составляет около 10-15G у старых накопителей и до 70-150 у новейших, собранных с применением технологий защиты. К счастью, накопители, находящиеся в рабочей системе подвергаются ударам очень редко, да и энергия этих воздействий значительно снижается элементами конструкции корпуса компьютера, поэтому повреждения в этом состоянии жесткие диски получают редко

  •  
  • Ударостойкость в отключенном состоянии определяет его устойчивость к ударам в нерабочем (отключенном) состоянии при которых накопитель не получает внутренних повреждений. Это очень критическая характеристика, т.к. накопитель в 95% случаев получает ударные механические повреждения именно в те, моменты, когда он находится вне корпуса компьютера. Ударные воздействия, полученные в этих случаях, могут исчисляться сотнями G за время в 1-2 миллисекунды
Чаще всего жесткие диски испытывают ударные воздействия в моменты транспортировок от поставщика к потребителю и в процессе его установки в PC недостаточно квалифицированным или плохо осведомленным персоналом. В России ситуация часто усугубляется тем, что партии винчестеров перевозят неподготовленным для этого транспортом, не предусматривая никаких дополнительных мер защиты на случай столкновения автомобиля или просто резкого торможения. Очень часто фирмы - продавцы комплектующих, при продаже винчестеров передают их покупателю упакованными в одну единственную электростатическую оболочку. А ведь покупателю его еще до дома или до работы везти. И где гарантия, что сам продавец, не стукнул этот винт, а это очень вероятно в таких точках торговли, как радиорынки. Достаточно посмотреть, как там с ними обращаются. Более того, достаточно сильное ударное воздействие жесткий диск может испытать, если случайно ткнуть его монтажным инструментом, например отверткой, стукнув два винчестера между собой или в результате усиленного проталкивания винчестера в его посадочное место в корпусе компьютера…. На рисунке 1 показаны наиболее типичные случаи возникновения ударных воздействий на винчестеры и степень их воздействия на жесткие диски. По вертикали - сила воздействия в единицах кратным ускорению свободного падения (G), по горизонтали длительность воздействия 

 

 



Наиболее пагубными являются удары с большой энергетической силой и короткой длительностью воздействия, обычно это составляет сотни G за менее чем одну милисекунду. Такие ударные воздействиия сгруппированы в верхнем левом углу рисунка и они обычно выходят за пределы ударостойкости стандартных накопителей. Характерными следствиями этих ударов чаще всего бывают: 
  • Шлепок головок; 
  • Проскальзывание и смещение дисков в пакете; 
  • Появление люфта в подшипниках. 
Самым распространенным последствием удара в накопителе является "шлепок головок", Рисунок 2. Он происходит когда энергиия удара направлена вертикально или под некоторым углом к горизонтальной плоскости. В этом случае, происходит отрыв магнитой головки от поверхности диска и затем ее резкое опускание на поверхность магнитного диска. В момент соприкосновения, головка врезается в поверхность своей кромкой, положение головки выравнивается и она с силой прижимается к поверхности всей плоскостью. В результате этого диск получает поверхностные повреждения, мельчайшие частички и осколки рассеиваются по поверхности магнитного диска. 

 

Не стоит думать, что эти осколки смогут улететь за пределы диска в виду центробежных сил возникающих при бешеном вращении диска. По причине магнитной природы диска и микроскопического размера осколков, они остануться на диске и ничем их оттуда не убрать. Кроме того, после удара, сама головка может получить физическое повреждение, а ее магнитные свойства резко ухудшаются. На практике данные повреждения проявляются в виде так называемых "битых кластеров". Если просматривать такой диск в программах с визуальным интерфесом типа Norton Speed Disk, то повреждения поверхности проявятся в виде одного или нескольких хаотично расположенных сбойных кластеров. Повреждения вызванные дефектом одной из головок скорее всего проявятся в виде гораздо большего количества дефектных кластеров и в их расположении будет четко отслеживаться некоторая закономерность. Но даже в том случае, если дефекты на диске не проявились сразу после ударного воздействия на накопитель, эти дефекты дадут о себе знать позже (через месяц или даже через год!). Почему? Давате рассмотрим этот вопрос детальней.

Магнитно-резистивные головки и их работа

Принцип работы магнитно-резистивной (MR) головки при чтении данных состоит в изменении сопротивления электрическому току в соответствии с изменением магнитного поля. Элемент чтения такой головки представляет собой очень тонкую пленку специального материала, которая меняет свое сопротивлении в соответствии с расположением магнитных доменов на поверхности вращающегося диска. Расположение этих доменов, определяется записанной на диск информацией. Изменение сопротивления пленки, регистрируется специальным каналом чтения и передается на дальнейшую обработку компаратору, окончательно определяющему, что было записано, ноль или единица. MR головки обладают еще одним свойством, непосредственно относящимся к нашей теме - конечное активное сопротивление пленки зависит от ее температуры. 

В нормальных условиях, при раскрученном до рабочих оборотов диске, воздушный поток приподнимает головку над диском, и она парит на расстоянии в несколько микрометров над гладкой поверхностью диска, не касаясь его. Если же на диске будут частицы или неровности сопоставимые по размерам с зазором между головкой и диском, то они, проносясь с огромной скоростью, под парящей головкой задевают ее и трение мгновенно разогревает головку. Этот нагрев, тут же сказывается на сопротивлении пленочного покрытия головки и оно резко повышается. Канал чтения не верно интерпретирует изменение сопротивления головки и чтение данных в этом месте становится невозможным.

Постоянное воздействие температуры преждевременно старит головку, а проносящиеся под головкой частицы действуют как абразивная шкурка. Способность головки реагировать на изменение магнитного поля ухудшается со временем (на диске появляются все новые и новые нечитаемые сектора, или как говорят диск начал "сыпаться"), и в конечном итоге происходит полный выход головки из строя. 

Решения

Одним из возможных решений проблемы может явиться осторожность и квалифицированность людей обращающихся с накопителями. Но таким способом проблему решить тяжело, т.к. даже за рубежом, более 30% жестких дисков устанавливаются в компьютеры не подготовленным персоналом вне фирм производителей компьютеров. В России этот процент гораздо выше. Более того, очень много случаев, когда ударные воздействия являются следствием случайности, а не халатности.

Таким образом, решение данной проблемы должно реализовываться через повышение ударной стойкости самого накопителя. В последнее время производителя накопителей разработали целый ряд недорогих и эффективных технологических решений по повышению ударной стойкости и надежности продукции и к нашему счастью, теперь это решение не ограничивается надписью "Handle with care!" на корпусе. 

Посмотрим, какие противоударные технологии предлагают нам основные производители.

Технология SPS

Технология SPS (Shock Protection System) была разработана компанией Quantum в первой половине 1998 года и впервые внедрена в винчестерах серии Fireball™ EL. Она представляет собой 14 улучшений и технологических решений в конструкции накопителя направленных, прежде всего на поглощение и минимизацию отрицательного эффекта ударов с высокой энергией и коротким временем воздействия. Это явилось результатом долгого и тщательного исследования поведения, взаимодействия конструктивных элементов, нагрузок и их распределения во время удара. Повторимся, самым пагубным последствием таких ударов, является отрыв головки от диска и ее дальнейший резкий шлепок по нему. Решения примененные инженерами Quantum исключают или значительно уменьшают высоту отрыва головки при ударе (Рисунок 3). Основная энергия удара поглощается остальными конструкциями накопителя, что предотвращает шлепок и появление осколков, ведущих к преждевременному старению жесткого диска. 

 

Технология SPS II

Технология SPS II явилась логическим продолжением технологии SPS и была объявлена в 1999 году. В то время как SPS обеспечивала повышенный уровень устойчивости к ударам полученным накопителем в нерабочем состоянии, SPS II дополнительно защищает работающий накопитель от производства записи/чтения в моменты удара и тряски возникающие в случае толчков системного блока работающего компьютера. Вместо записи на диск, данные кэшируются, и будут записаны на диск позже, когда энергия толчка будет поглощена и диск будет в спокойном состоянии. Рисунки 4 и 5 показывают процесс записи в момент удара на не защищенный и защищенный технологией SPS II диски.


Рис.4: Запись на диск без технологии SPS II
 
 


Рис.5: Запись на диск с технологией SPS II во врем удара

Технология GFP

Технология GFP (G-force protection) компании Seagate объединяет в себе ряд технологических решений направленных на улучшение нерабочей ударостойкости носителей. Эта технология обеспечивает большую степень защиты таких компонентов жестких дисков как: двигатель и подшипник вращения дисков, головки, гибкие держатели головок и диски. 

Уменьшив массу и размеры головок, а так же увеличив величину клиренса между держателем и диском, инженеры компании заметно уменьшили кинетическую энергию этих компонентов приобретаемую ими в процессе удара. А значит, у головок становится меньше шансов произвести шлепок по диску в момент внешнего воздействия. Seagate также уделила внимание защите и прочности подшипников вращения дисков и узлу крепления дисков в пакете. 

Дефекты возникающие в подшипнике (см. рис. 6) ведут к повышенной шумности и вибрациям винчестера, что к конечном итоге может привести к отказу двигателя. 

Проскальзывание дисков в узле крепления происходит достаточно редко, но даже если это и происходило в результате удара, то жесткие диски семейства Barracuda и Cheetah всегда имели способность работать с проскользнувшим диском благодаря встроенной системе коррекции головок на каждый оборот диска (once per revolution compensation - OPR). Сервосистема диска использует OPR для определения величины, на сколько сдвинут диск от своего первоначального положения, и в соответствии с этим корректирует положение головок, так чтобы положение головки соответствовало записанной на диск дорожке. В технологии GPS применена улучшенная система OPR, что вдвое увеличивает способность сервосистемы обслуживать сдвинутые диски. 

В целом, применение GPS позволяет увеличить сопротивляемость ударным воздействиям на 30% для дисков Barracuda и на 40% для семейства Cheetah. 

Maxtor тоже не осталась в стороне, и разработала свою собственную технологию, получившую название ShockBlock. Первой моделью накопителя с этой технологией, стала модель DiamondMax Plus 5120. Как и в технологиях конкурентов, проблема шлепка головки решается в ней за счет уменьшения физических размеров и массы головки. Но здесь Maxtor, добавила еще одно решение. Все мы знаем, что в нерабочем состоянии головки винчестера размещаются в так называемой landing zone, в зоне, куда запись информации никогда не производится. Поэтому, укрепив покрытие магнитного диска в landing zone, компания заметно уменьшила вероятность появления мелких частиц и осколков в случае, когда головка все же ударялась о диск накопителя в отключенном состоянии. 

Дальнейшим развитием этой технологии стала технология ShockBlock Enhanced. Эта технология позволяет накопителям ее производства противостоять ударам с уровнем до 1000 G! Чем же достигнута такая высокая ударостойкость? Делая держатели головок более гибкими, производители не только не снижают силу шлепка головки о диск, а даже увеличивают его, так как эффект "хлыста", только усиливает удар. В решении ShockBlock наоборот держатели делаются гораздо более упругими. Неизбежно, увеличив упругость держателя, приходится  дополнительно решать вопрос обеспечения прежнего "парения" головок над диском во время его вращения. Более того, считая, что пагубным эффектом является не столько сам шлепок, а его последствия (частицы и осколки на диске), то нужно сделать так чтобы даже после шлепка появление осколков было мене вероятным. Посмотрите на рисунок. Головка, опускаясь после удара, всегда бьет о диск своей кромкой. Вероятность повредить диск очень велика.

 

 
Поэтому меняется конструкция крепления головки к держателю таким образом, что бы даже во время шлепка, головка ударялась о диск равномерно всей поверхностью. Это в несколько раз уменьшает вероятность появления осколков и частиц после удара головки.   

 

Компания Fujitsu не изобретала и не патентовала каких либо громких технологий по защите дисков от ударных воздействий, но, тем не менее, многие из производимых в настоящее время винчестеров очень устойчивы к нерабочим ударным нагрузкам. Например, некоторые серии винчестеров Fujitsu имеют удароустойчивость на уровне 250 G, а некоторые даже  до 600 G! Причем, их варианты для мобильных компьютеров способны нормально переносить до 700 G в нерабочем состоянии и до 125 G во время работы. 

Компания Samsung использует две  собственных технологий защиты ImpacGuard™ и Shock Skin Bumper™ от ударных воздействий с уровнем до 250 G. Немного, если посмотреть на достижения других компаний.

Нам не удалось найти какой либо информации о применяемых в винчестерах Western Digital специальных технологиях защиты от ударов. Но, судя по техническим данным винчестеров, этих технологий возможно и не было. Ряд моделей запущенных в производство совсем недавно, имеют повышенную ударостойкость на уровне 150-200 G. Остальные модели на уровне 60-70 G. Поэтому также требуют очень нежного обращения. 

Купив винчестер, обратите внимание на появившиеся сбойные кластера в течение гарантийного срока, и если появился хотя бы один - срочно меняйте. И не поддавайтесь ни на какие убеждения продавцов по поводу того, что один два нечитаемых кластера - это в пределах нормы. Появление битых кластеров неизбежно приведет к появлению новых и новых, вплоть до выхода винчестера из строя. Вопрос только в том, насколько долго он протянет.   

При подготовке статьи были использованы материалы и техническая документация с сайтов производителей.

 
Вадим Репин (vad@kos-tv.kmtn.ru).

 

Время работы:
пн-пт, 10:30 - 19:00
E-Mail:
info@microlab.ru
Skype:
microlab-ru
Адрес:
г. Москва, Семёновский Вал, 6Г строение 3

Рейтинг@Mail.ru
© 1992-2024 Майкролэб Инвестмент